Woher kommt das Salz des Meeres und wohin geht es?
ARTIKELREFERENZ EXPORTIEREN
- Downloadkosten : €6
Zusammenfassung:
Die gelösten Salze im Meer kommen aus den Süßwasserzuflüssen, in denen eine geringfügige Salzmenge enthalten ist, die im Meer zurückbleibt, während das entsprechende Wasser wieder verdunstet. So müsste sich das Salz im Meer eigentlich immer weiter anreichern, wie dies in abflusslosen Seen arider Gebiete geschieht. In den Ozeanen ist dies aber nicht der Fall. Das Salz wird dem Meer wieder entzogen. Es gibt sehr verschiedene Entzugsarten für Salzionen im Meer: Salzhaltiges Aerosol, das vom Wind an Land geblasen wird, spielt eine wichtige Rolle. Die Bildung von Schalen bei Tieren wie Muscheln und Korallen und vieler Planktonarten entzieht dem Meer Salzionen, wenn die Schalen sich als Sedimente ablagern. In Tiefseetonen und der basaltischen ozeanischen Kruste verschwinden Salzionen durch Ionenaustauschvorgänge oder neues Kristallwachstum. Die Schwarzen Raucher (Black Smoker) an den Mittelozeanischen Rücken sind die wichtigsten Entzugsstellen für Natrium und Magnesium durch Ionenaustausch in der Tiefe, wenn Meerwasser in die ozeanische Kruste eindringt, sich erwärmt und mit Metallsulfidpartikeln beladen am Meeresboden wieder austritt. Durch die Drift der ozeanischen Platten kann dieser Vorgang immer wieder von neuem stattfinden.
Es gibt auch noch einen sporadischen Entzug des Meersalzes, nämlich durch Salzlablagerungen in abgeschnürten, in ariden Gebieten liegenden Meeresrandbecken. Beispiele hierfür sind insbesondere das Mittelmeer, aber auch die Salzschichten im Untergrund Norddeutschlands und des Karpaten- und Pyrenäenvorlandes. Hier haben sich in der Vergangenheit bis zu über einem Kilometer mächtige Salzlager angehäuft, die überdeckt wurden und teilweise wieder an die Oberfläche gekommen sind.
Auch wenn einzelne Ionen in den Ozeanen über die Zeit z. T. erhebliche Schwankungen aufweisen, bleibt der Salzgehalt der Ozeane insgesamt innerhalb geringfügiger Grenzen relativ konstant, was den Lebewesen dieses Milieus einen relativ stabilen Lebensraum bietet.
Referenzen
- Allemand, D., Osborn, D. (2019): Ocean acidification impacts on coral reefs: From sciences to solutions. Regional Studies in Marine Science 28: 100558
- Arzhannikov, S. G., Arzhannikova, A. V. (2010): The late Quaternary geodynamics of the Hyargas Nuur basin and bordering scarps (Western Mongolia). Russian Geology and Geophysics 52: 220–229
- Bergsten, P. & al. (2021): Basalt-hosted microbial communities in the subsurface of the young volcanic island of surtsey, iceland. Frontiers in Microbiology 12: 728977. doi: 10.3389/fmicb. 2021.728977
- Berner, E. K., Berner, R. A. (2012): Global environment. Water, air, and geochemical cycles. 2. Auflage, Princeton, New Jersey
- Chester, R. (2000): Marine Geochemistry. 2. Auflage, Oxford, London
- Clarke, A. (2014): The thermal limits to life on Earth. International Journal of Astrobiology 13(2): 141–154. doi: 10.1017/S1473550413000438
- Coumou, D. & al. (2008): The structure and dynamics of mid-ocean ridge hydrothermal systems. Science 321: 1825–1828
- Coumou, D. & al. (2009): Phase separation, brine formation, and salinity variation at Black Smoker hydro- thermal systems. Journal of Geophysical Research 114: B03212. doi: 10.1029/ 2008JB005764
- Dalrymple, B. G. (2004): Ancient Earth, Ancient Skies. Stanford
- Elderfield, H., Schultz, A. (1996): Mid-ocean ridge hydrothermal fluxes and the chemical com- position of the ocean. Annual Review of Earth and Planetary Sciences 24: 191–224
- Fisk, M., McLoughlin, N. (2013): Atlas of alteration textures in volcanic glass from the ocean basins. Geosphere 9(2): 317–341. doi:10.1130/GES00827.1
- Garrison,T. (2002): Oceanography: An Invitation to Marine Science (554 Seiten). Brooks/Cole, USA
- Groß, M. (1996): Leben im Toten Meer – die Tricks salzliebender Bakterien. Spektrum der Wissen- schaft 9: 18, https://www.spektrum.de/magazin/leben-im-toten-meer-die-tricks-salzliebender- bakterien/823285
- Guo, Z.-K. & al. (2020): Anhydrite assisted hydrothermal metal transport to the ocean floor — Insights from thermo-hydro-chemical modeling. Journal of Geophysical Research: Solid Earth, 125: e2019JB019035. https://doi.org/10.1029/2019JB019035
- Hautmann, M. (2004): Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50: 257–261
- Holden, J. F. & al. (2012): Biogeochemical processes at hydrothermal vents: Microbes and minerals, bioenergetics, and carbon fluxes. Oceanography 25(1): 196–208, http://dx.doi.org/10.5670/ oceanog.2012.18
- Holland, D. (1978): The Chemistry of the Atmosphere and Oceans. New York
- Homann, W. (1993): Die Goldvorkommen im Variszischen Gebirge. Teil II. Das Gold im Harz, im Kyffhäuser-Gebirge und im Flechtinger Höhenzug. Dortmunder Beiträge zur Landeskunde. Naturwissenschaftliche Mitteilungen 27: 149–265
- Hönisch, B. & al. (2012): The geological record of ocean acidification. Science 335: 1058–1064
- Horita, J. & al. (2002): Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta 66(21): 3733–3756
- Hsü, K. J. (1984): Das Mittelmeer war eine Wüste. Auf Forschungsreisen mit der Glomar Challenger. München
- Huang, K.-J. & al. (2018): Magnesium isotopic composition of altered oceanic crust and the global Mg cycle. Geochimica et Cosmochimica Acta 238: 357–373
- Jupp, T., Schultz, A. (2000): A thermodynamic explanation for black smoker temperatures. Nature 403: 880–883
- Kelley, D. S. & al. (2001): An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°CN. Nature 412: 145–149
- Königshof, P. & al. (2016): The Rhenish Massif as a part of the European Variscides. Münstersche Forschungen zur Geologie und Palaeontologie 108: 1–13
- Kümmell, S. (2001): Immerwährende Bewegung – Meeresströmungen zwischen Sonne und Erde. Jahrbuch für Goetheanismus 2011: 151–184. Niefern-Öschelbronn
- Landrø, M. & al. (2011): Anisotropy in the salt outcrop at Cardona, Catalonia – implications for seismic imaging. First Break 29: 41–45
- Lécuyer, C. (2016): Seawater residence times of some elements of geochemical interest and the salinity of the oceans. Bulletin de la Société Géologique de France 187(6): 245–260
- Ließmann, W. (2010): Historischer Bergbau im Harz. Springer Verlag
- Liu, H.-Y. & al. (2021): Potassium isotopic composition of low-temperature altered oceanic crust and its impact on the global K cycle. Geochimica et Cosmochimica Acta 311: 59–73
- Lovelock, J. (1979/2009): Gaia. A New Look at Life on Earth. Oxford
- Lovelock, J. (1992): Gaia. Die Erde ist ein Lebewesen. Was wir heute über Anatomie und Physiologie des Organismus Erde wissen und wie wir ihn vor der Gefährdung durch den Menschen be- wahren können. 2. Auflage, Bern, München
- Lowenstein, T. K. & al. (2001): Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 294: 1086–1088
- Lowenstein, T. K. & al. (2014): The geologic history of seawater. In Holland, H. D., Turekian, K. K (Eds.): Treatise on Geochemistry. 2. Auflage, Band 8: 569–622. Oxford
- Moreno, C. & al. (2019): Basin evolution and massive sulfide deposition at Rammelsberg (Germany): Updating the subsidence analysis. Minerals 9(1): 45 (1–14). doi: 10.3390/ min9010045
- Nissenbaum, A. (1975): The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology 2: 139–161
- Peccerillo, A. (2021): Air, Water, Earth, Fire. How the System Earth Works. Cham, Schweiz
- Pene, C. & al. (2012): Badenian evaporite evolution and methane entrapment in the Transylvanian Basin. 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012 Co- penhagen, Denmark, 4–7 June 2012. https://www.researchgate.net/publication/293606215 _Badenian_Evaporite_Evolution_and_Methane_Entrapment_in_the_Transylvanian_Basin
- Proksch, E. & al. (2005): Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function, enhances skin hydration, and reduces inflammation in atopic dry skin. International Journal of Dermatology 44: 151–157
- Richardson, K. & al. (2023): Earth beyond six of nine planetary boundaries. Science Advances 9(37): eadh2458. doi: 10.1126/sciadv.adh2458
- Richter, L., Diamond, L. W. (2022): Characterization of hydrothermal fluids that alter the upper oceanic crust to spilite and epidosite: Fluid inclusion evidence from the Semail (Oman) and Troodos (Cyprus) ophiolites. Geochimica et Cosmochimica Acta 319: 220–253
- Rona, P. A. (1986): Erzbildung an heißen Quellen im Meer. Spektrum der Wissenschaft Heft 3: 78–87
- Ryan, W. B. F. (2008): Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis. Stratigraphy 5(3–4): 227–243
- Schad,A. (2023): Vom Leben unserer Erde. Eine Liebeserklärung an unseren Heimatplaneten. Stuttgart
- Schad, W. (2023): Der Geist der Erde. Unsere Welt als lebendiges Wesen. Birnbach
- Schminke, H.-U. (1986): Vulkanismus. Darmstadt
- Schneiderhöhn, H. (1962): Erzlagerstätten. Kurzvorlesungen zur Einführung und Wiederholung. 4. neu bearbeitete Auflage. Stuttgart
- Stanley, S. (2001): Historische Geologie. 2. deutsche Auflage herausgegeben von Volker Schweizer. Heidelberg, Berlin
- Staudigel, H. & al. (2014): Deep biosphere record of in situ oceanic lithosphere and ophiolites. Elements 10: 121–126. doi: 10.2113/gselements.10.2.121
- Sun, X. & al. (2016): Diffusive cation fluxes in deep-sea sediments and insight into the global geochemical cycles of calcium, magnesium, sodium and potassium. Marine Geology 373: 64–77
- Türke, A. & al. (2018): Comparing biosignatures in aged basalt glass from North Pond, Mid-At- lantic Ridge and the Louisville Seamount Trail, off New Zealand. PLoS ONE 13(2): e0190053. https://doi.org/10.1371/journal.pone.0190053
- Walter, R. (1992): Geologie von Mitteleuropa. 5. Auflage. Stuttgart
- Weldeghebriel, M. F. & al. (2023): [Ca2+] and [SO42−] in Phanerozoic and terminal Proterozoic seawater from fluid inclusions in halite: The significance of Ca-SO4 crossover points. Earth and Planetary Science Letters 594: 117712
- Wimmenauer, W. (1992): Zwischen Feuer und Wasser. Stuttgart
- Wirsen, C. (2004): Is life thriving deep beneath the seafloor? Recent discoveries hint at a potentially huge and diverse subsurface biosphere. Oceanus Magazine 42(2): 1–6. http://oceanusmag.whoi.edu/v42n2/wirsen.html